VIBRATIONAL FLUIDIZATION OF A SHALLOW
GRANULAR BED
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A model is given for a vibrationally fluidized bed that incorporates the density reduction and allows
one to calculate the pressure difference across the bed averaged over the period of oscillation.

The physical parameters of a bed and of the medium in which it lies go with the geometrical features of
the apparatus and the mode of vibration to produce a great variety of forms of behavior in a vibrationally fluid-
izedbed [1], primarily because of the multiplicity of physical factors that can influence the ﬂu1d1zatmn which
considerably hinders any attempt at a detailed theory of the process.

It is inadequate to represent even a shallow granular bed used at a moderate vibrational frequency as a
rigid porous system interacting with the grid and the medium, although this allows of comparatively simple
analysis [2-4]. Dynamiec features such as the expansion of the bed become very important {5, 6], which is re~
lated to the expansion occurring in an ordinary fluidized bed in response to the flow rate [7, 8], and these have
a marked influence on the pressure fluctuations. This expansion is the main cause of the nonzero time-aver~
aged* pressure difference across such a bed and the reduction in the hydraulic resistance caused by the vibra-
tion [5].

If the bed is relatively deep and the vibrational frequency is relatively high, the propagation of stress
waves in the dense phase and of porosity waves in the expanded phase can begin to play a considerable part {9,
10}, as can the compressibility of the fluid [11] and the wall friction [12]. Any analysis of these factors re~
quires consideration of the viscoelastic and other parameters of the bed as a porous medium, and thus involves
discussing the corresponding relaxation times and the wave propagation speeds, which means that in fact only
the lower part of the bed vibrates in accordance with the physical model described in [6]; it is also evident that
there are cohesion effects in a finely divided bed, which can alter the effective characteristics [13].

Here we neglect all effects concerned with nonuniformity in the state of stress, compressibility in the
fluid (gas), and wall friction; i.e., we consider only a comparatively shallow bed. The hydraulic resistance
of the bed and of the vibrating grid are assumed to be linear in the gas speed, while the motion of the bed is
taken as one-dimensional.

Immediately after the bed becomes detached from the grid attime t,» itmoves upwards relative tothe latter
and exerts a resistance onthe passing gas, whichtends to accumulate mthe increasing gap between the bottom
of the bed and the grid. The hydraulic force acting between the particles within the bed and the gas flow is

f=CK@u KO0 =1,p=1—c¢ (1)

and this is dependent on the local porosity € and the relative gas speed u; the resistance coefficient C for small
(Stokes) particles is 6mua, while numerous theoretical and empirical expressions are available for K(p), which
incorporates the effects of the hindered flow.

*To avoid misunderstanding, we must state atonce that some workers, including [1 ], suppose that the pressure
difference across the bed averaged over the period of vibration is an independent effect, while the static pres~
sure difference is some quantity independent of the dynamic (pulsating) pressure. Physically speaking, this
viewpoint is entirely erroneous, since the pressure is an intensive thermodynamic parameter. In fact, vibra-
tional fluidization is highly nonlinear, since any given harmonic oscillation applied to this nonlinear system
results in all multiple frequencies (as in any nonlinear system), including a component at zero frequency. A
nonzero average pressure difference reflects the latter harmonic. This is emphasized by the use of the term
average pressure difference instead of the inappropriate term static pressure difference.
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The hydraulic forces on particles at the upper and lower boundaries of the bed may differ from f, and in
particular may be substantially less than the latter [14], so there may be no balance between the gravitational,
inertial, and hydraulic forces for such particles; the sum of these forces is nonzero. It is then readily seen
that the total force acting on a particle at the lower surface of a bed tends to return a particle to the latter when
the bed begins to be detached from the grid (when the gap between the bed and the grid inceeases), i.e., the
lower surface is stable in the same way as in the free surface of a fluidized bed. Conversely, the force acting
on a particle at the upper surface tends fo take the particle further from this surface in the incident gas flow;
i.e., the upper surface is unstable in the sense that a particle leaving the latter moves faster than the center
of gravity of the bed.

The set of such particles directly in contact with the incident flow may be identified with the effective
upper boundary of the expanding bed; the relative motion of this boundary causes an increase in the porosity
of the upper part of the bed. This results in a wave of elevated porosity, which propagates downward into the
bed and is analogous to the waves that occur in ordinary fluidized beds in response to changes in fluid flow [7,
81. )

In the final stage (when the gap between the bed and the grid decreases), the role of the boundary sur-
faces becomes different: The gas flow is then incident on a lower surface that approaches the grid more rapidly
than does the center of gravity, while the upper surface becomes stable and the increased-porosity wave
propagates from below upward. The bed clearly continues to expand.

Finally, at some instant t' the lower surface comes in contact with the grid, so the expansion of the bed
ceases. The part of the bed that has fallen becomes closely packed, and the thickness of the close-packed part
increases very rapidly with t. Let t" be the instant at which the entire bed attains the close-packed state; i.e.,
this is the time when the upper surface of the bed falls and is less than the time t; +2n/w for fresh detachment
of the bed from the grid, in which case the situation will repeat, If this is not so, the bottom close-packed
part of the bed detached from the grid will collide with the descending particles in the fluidized state and will
entrain the latter, so the mean porosity of the bed may even become less than that directly after detachment,
In principle, piston structures may be formed, after several vibrational cycles, and therefore the nonuniformity
of the bed, which previously was neglected, can become very substantial. Here we envisage only a very sim-
ple form of vibrational fluidization in which the bed has time to revert to the close-packed state as a whole
before each fresh detachment.

The accelerated action of the boundary layer facing the incident gas flow can be described if we assume
that the particles are acted on by a hydraulic force of, where f is defined by (1) and o< 1; unfortunately, no
theoretical evidence is available on ¢, while the experimental evidence [14] relates to single particles near a
regularly packed bed and having a definite disposition with respect to the particles in the bed, although the mea-
sured forces are substantially dependent on the disposition. Therefore, the data of [14] cannot be used directly
to estimate ¢, which applies particularly to the particles at the boundary, since these are randomly disposed
one with respect to another and with respect to the other particles in the bed. It is best to consider o as an
adjustable empirical parameter.

This ¢ and the various assumptions above make it meaningless to consider the porosity-wave propaga-
tion in excessive detail, which also is difficult even in a linearized formulation; on the other hand, it is physi-
cally obvious and well confirmed by experiment that for small times (usually on the order of 0.01-0.1 sec) and
for A/hy < 1 the bed does not have time to expand substantially, and therefore the current height 2h and mean
porosity € differ only slightly from 2h and €, the values in the close-packed state. The condition ph = pghy =
const then gives us that

l—e=pmp (1 —a) a=(—h)h<1 (2)
where the relative expansion @ acts as a small parameter.

It is therefore natural to neglect the nonuniformity of the bed in the fluidized state, which is associated
with porosity-wave propagation, and then the bed is considered as expanding uniformly, so we can utilize the
mean porosity ¢ defined by (2). Here in most instances it is sufficient to assume that € = ¢ in order to calcu-
late the hydraulic forces; the difference between e and e, becomes significant only in evaluating effects due
solely to the expansion of the bed. Further, the smallness of @ enables one to assume that the time interval
t"—t' is small by comparison with the fluidization phase t" —t; ~ t'—t;.

We use the laboratory coordinate system x, in which the vertical coordinates of the vibrating grid and
of the lower and upper boundaries of the bed and of the center of gravity are, respectively, x; = Asinwt,
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X1, Xp and Xo =Xy + b = xy—h; we take € = g, to get the usual equation of motion for the center of gravity in
terms of unit mass of particles [2-4]:

%y =—g+BKQ, p=Cim, K =K(p,), 3)

where m is the mass of a single particle and a dot denotes differentiation with respect to time. In writing (3)
we have neglected the difference between the hydraulic forces acting on the boundary particles and the f of (1),
which is justified for a/hy < 1; we have also neglected the nonstationary components in the hydrodynamic inter-
action, which are important for w > u/a® dy [15], Also, therelative infiltration rate is @ averaged over thebed,
i.e., over x in the range from x4 to x,.

If the grid were impermeable, we would have Q = =z, = — (Xx¢—X); on the other hand, Q = —z¢ +q, for
a permeable grid, where q is the gas flow through unit area of the grid into the free cavity xg <x <x; (0<z <
z4). If the gas pressure above the bed is the same as that under the grid, while K' is the grid resistance coef-
ficient, then we have within the working accuracy that

Ap = 2hapod15KQ = Klqv g=— %Q, ® = ____2}10910(({15]( | (4)
and further
Qz_(l +x)—léc. (5)

We transform (3) to a coordinate z = x—x, linked to the grid and use the obvious initial condition to get
the following equation for zg:

BK . . 1 . g
z, = — @?Asinof, t>t = — Y
l—}—uc g+ in o, >¢ marcsm A

2

(6)
2, =hy 2,=0 (t =t,).

We now consider the motion of the upper boundary after detachment of the bed; the equation analogous to
(3) takes the form

Xy = — g+ oBKuy, %, =%, +h, 4, =Q—H. (7

Then in the z coordinate system we get

7.+ 1 = —g 1+ a?dsin of — oK [(1 + %)=z, -+ A]. (8)
We substract (6) from (8) to get the following equation for h: '

R+ oBKh = (1 — o)(1 + %)~'BKz,, ()
9
h=hy, h=0 (t=1¢).

The equation for the lower boundary at the end of the motion is entirely analogous to (8); the correspond-
ing equation for h is

B+ oBKh = — (1 —o)(1 +%)~'BKz,,

. {10)
h=hy h=h, (t=1,),

where h, and ﬁ* are the values of the function derived from (9) and the derivative at time te. The latter is the
solution to ti within the framework of our representation. Equations (9) and (10) are readily combined into

one if we use zc(t ) = 0 on the right in each; this applies up to time t' corresponding to fall of the lower bound-
ary onto the grid.

If the hydraulic resistance of the grid is much less than that of the bed (rn > 1), the inhomogeneous parts
in (9) and (10) essentially disappear, which corresponds to cessation of expansion in the detached bed; it is
readily seen that in general the expansion of the bed increases monotonically as # decreases, i.e., as the resis-
tance of the grid increases, and it is maximal for » = 0, i.e., for an impermeable grid. Similarly, ® governs
all the other effects related to expansion of the bed, in particular the nonzero average pressure difference. It
has frequently been observed by experiment that this pressure difference vanishes and the pumping action of the
bed ceases when the hydraulic resistance of the grid is small. An attempt has been made [16] to explain this in
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Fig. 1. Dependence of n at time 7' on v for: a) ¢ = 0.6 and
various k; b) k = 0,3 and various a. The broken lines define
the frequencies vy corresponding fo maximum expansion of
the bed.

terms of a valve effect at the perforated grid due to differences in occlusion of the apertures in the rising and
falling states. The explanation was unsatisfactory because there is a free cavity above the grid in the rising
phase, which is significant only for the production of the pressure difference across the bed, and this free
cavity is almost entirely clear of particles. For definiteness, we consider only the case n=0 in what follows;
however, all the calculations can be readily carried through for any other value of .

We introduce the following dimensionless variables and parameters:

T:(j)t, ;: -—zf—————ho, n= h—ho

A

’k?: —q—, =L.
1 A v T (11)

Then from (6), (9), and (10) we get

E4v-1i=—k-tsint, L=(=0 (t=1),
. ) , ) (12)
n+ovin=(_1—0ovIl{l, n=1=0(t=m1)

Here a dot denotes differentiation with respect to 7. The first equation in (12) is one first considered by Kroll
[2, 3], and the solution is

3

14+

(@ =—

(kv + Y T exp (— e ) vy YT —

z v
—kv(t—1)— l—T—vz sint — TV COS T. (13)

The solution to the second equation in (12) for the region 7y = 7 =7, is

n(@)= 1@ —n° (n)exp[—iv (r—) ] v =% [%v +

- 3
+ kv +VT—F) ]—1 akv(-r-——'tl)-}- M (kv +V1—F) x
o 14w
T v2 . 1—a? v .(1 —@)(v* —0) 14)
x exp ( v ) 14+ o242 sin¥ 14v2 o2 42 cost
and for the region T, =7 = 17', is
l1—o

n () = — 1 (1) + {2n°(r,..>—2 L5 —1° (1) exp [——g-(r*——r,)]} X

(1]

xexp[—% (r—-r,.)] +2 “;"cm). (15)

The instant T4 is defined by :t:('r*) = 0, which is readily written in explicit form by solving (13); therefore,
the dimensionless paths of the center of gravity and of the bed expansion are dependent only on three dimension-
less parameters: the above quantity o, the quantity k (the reciprocal of the ordinary multiplicity of the vibra-
tional acceleration), and the relative frequency v. From (13)-(15) we readily derive simplified formulas cor-
responding to small k, small and large v, and so on.
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Fig, 2. Curves in the parameter plane for vibrations that deter-
mine the maximum expansion of a bed of particles having 8K =100
sec’i; the numbers on the curves are the values of 0. The broken
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Fig. 3. Dynamics of bed expansion for k = 0,1, v = 1,0 (7% =(3.8),and
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Fig. 4. Boundaries be-
tween mild vibrofluidiza-
tion modes (not accom-~
panied by collision of sus-
pended layers of granular
material) in the (k, V)
phase plane for various o.

Strictly speaking, the solution to (13) applies only up to T = T4, when the center of gravity of the
bed is again at the level z; = hy, while the solution of (15) applies up to 7 =7' <7,, when the lower boundary
of the bed comes in contact with the grid. However, the time interval (dimensionless) " —7'is small by com~

parison with 7, —T;, so (15) can still be used for 7 in the interval (™, 7'). The equations for these dimension-
less times are

T, = arcsink, (1) =0, I(®)—n({r)=0,
L) =0, {@)+n@)=0.

The conditions for realization of these modes (without collision between the beds of granular material in
the suspended state) can then be put as

(16)

T <1, - 20 = arcsin & - 2m. amn

Figure 1 shows the dimensionless expansion of the bed at time 7' as a function of v for various k and c;
the expansion is maximal for the value vm of the dimensionless frequency, which is independent on k and o.
As would be expected, vy, decreases monotonically as k increases for a given g, while it increases monotoni-
cally with o for a given k. The value of B8 in (3) is inversely related to the density and particle size, and
directly to the density and viscosity of the gas, while the converse applies to the v of (11). Therefore, this
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variation in the physical parameters should reduce the expansion of the bed for v > vy, ; however, the converse
effect should occur for sufficiently small dimensionless frequencies (v < vp).

The v = v (K, 0) curves are readily derived from curves such as those shown in Fig. 1, and they cor-
respond to the maximum expansion in the (A, w) parametric plane. Figure 2 shows such curves for various o
and BK = 100 sec~l. Theseparametric relationships are of interest because in principle they allow one to define
optimal values for the vibration parameters such that all etfects due to bed expansion will be the most exten-
sive. In particular, in some instances one naturally expects accentuation of the small-scale motion within the
bed as the expansion increases, and hence acceleration of various transfer processes associated with such
motion, Figure 2 shows also the lines of k(A, w) = const for comparison,

Figure 3 shows a particular example of an expanding bed; 1(7) oscillates slightly around the asymptotic
lines after a short interval, and all these lines emerge from a single point on the 7T axis., Analytical equations
are readily derived for these asymptotes, and these may be of value in approximate calculations.

Figure 4 shows the bounds to the existence of these states, as indicated by (17), which are realized if the
image point in the phase platie lies above the boundaries. It is readily seen that any change in ¢ results in a
substantial change in the curves in Fig. 4; on the other hand, the curves reach a steady level at high frequen-
cies. The beds of granular material collide while suspended if the image point lies below the boundaries in
Fig. 4.

We now consider the variations in pressure difference Ap in the bed (positiveApcorrespond to reduced
pressure in the gap between the bed and the grid). If we neglect the expansion of the bed for » = 0, we get
from (4), (5), and (11) that

which is the result implied by Kroll's theory [2, 3]. The actual dependence of Ap on A and BK is determined .
by the physical properties of the particles and gas, and it is nonlinear because these quantities are dependent
on k and v, which influence the dimensionless velocity ¢ of the center of gravity. However, Ap is linearly de-
pendent on hy; moreover, it is readily seen that the pressure distribution over the depth of the bed at any time
[apartfrom the short interval (t', t")] is also linear, The latter corresponds with experiment for sufficiently
shallow beds, which are the ones to which this theory applies. The characteristic relationships between the
quantity of (18) and the various parameters are familiar and need not be given here.

We see from (18) that the pressure under the bed is reduced in the initial stage & > 0), whereas it is ele-
vated by comparison with the pressure above the bed in the final stage. The average pressure difference is de-
termined by averaging Ap over a vibration period, and in this approximation we have

2n/a 2x
® pPr. P (. '
op = o V Apdt = EJ—I—j‘CdT = ﬂj‘gdrao, (19)
[ 0
since &(1,) =¢(7y) = 0by definition.

Consequently, we may estimate the average pressure difference only if we incorporate the difference be-
tween € and &;, i.e., use (6), (9), and (10) and the equations of (12) implied by these for K(p) instead of K =
K(pg); we use (2) with the obvious relation

= (Ah)n, , 20)
and find that the small-parameter method may be employed on the basis that
=00+ Ah)E D +. .., =104 A/R)aD + ..., (21)

where the quantities ¢® and 7 are of identical order in A/hy; the equations for these are derived by means of
standard perturbation theory. The equations for §(°) and 1 coincide with those written above in (12); i.e.,
these quantities are represented in the form of (13)-(15). The formulation and solution of linear equations for
§(1) and n(’) is elementary, but there is no need to do this in order to calculate dp. In fact, the deviations of
the actual porosity from &; are small, so instead of (8) we have up to terms of the first order in A/h, that

K(p);
= P =P 1
Ap = g (

A )t t A oz oo 4K (p)
ZN = Pl t— ZANnqop® | = 22 .
(e Jv= 250

Here we have used (2), (20), and (21), together with the identity ph = pghy, which reflects the conservation
of the granular material,
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We average (22) over the period of oscillation in accordance with (19) and use the definitions of P and N
of (18) and (22) to get within our accuracy that
Ty

APN - 2 dK(p)

= 0F (0 gy = [B0, 2210

o 25, an L de (“ dp

Te

Japarep,
$=p¢
(23)

Ts
8p’ =——S ngdr.

Tx

As K(p) is an increasing function, the sign of 6p is determined by the sign of the integral in (23); a qualitative
examination shows that op' is positive, at least for the states most commonly used, i.e., corresponds to a
mean pressure reduction under the bed. An interesting point is that p in that case is independent of the bed
depth. Figure 5 shows the dependence of dp' on the dimensionless parameters; the relationship resembles that
for the dimensionless relative expansion of the bed in Fig. 1,

It would be quite possible to calculate the components of second and higher orders in the expressions for
¢, 1, 6p, and so on; however, we have neglected the nonuniformity of the expansion above, and therefore such
calculations would exceed the accuracy of the physical formulation. Moreover, even the result of (23) is to be
treated as approximate and applying only within a coefficient of the order of one.

The literature contains a great variety of suggestions on ways of classifying modes of vibrational fluidi- -
zation; leaving aside the case of a vibroviscous bed (k > 1), we see that it is best to distinguish first shallow
and deep beds, in which the effects of viscoelastic and other waves and of wall friction are correspondingly
slight and substantial. Second, it is desirable to distinguish mild and severe vibrational fluidization states.

In the first, the bed has time to sink down onto the grid before the next detachment, whereas in the second this
is not so, and one gets colliding layers of fluidized material. On this basis, we have considered mild fiuidiza-
tion states in the above.

NOTATION
A is the vibration amplitude;
a is the particle radius;
C is the hydraulic resistance coefficient for a particle;
dy, d4 are the gas and particle densities;
f is the hydraulic force;
g is the acceleration due to gravity;
h is the half height of the bed;
K is the function in (1) for constrained flow around particles;
K’ is the hydraulic resistance coefficient of grid;
k is the reciprocal of vibrational-acceleration factor;
m is the mass of a particle;
N is the parameter in (22);
P is the coefficient in (108);
Ap, 6p are the instantaneous and mean pressure drops in bed;
Q is the speed relative to center of gravity;
q is the gas flow rate through the grid;
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t is the time;

u is the local relative speed;

X, 2 are the laboratory and grid vertical coordinates;

o is the relative expansion;

B is the reduced resistance coefficient in (3);

£ is the porosity; .

n is the dimensionless relative expansion;

n is the hydraulic resistance ratio (bed to grid);

il is the viscosity; )

v is the dimensionless vibration frequency;

¢ is the dimensionless relative coordinate for the center of gravity;
P is the volume concentration of particles;

c is the coefficient for boundary resistance reduction;
T is the dimensionless time;

w is the circular vibration frequency.

Indices

0 is the packed state;

1,2,ande¢ are the lower and upper boundaries and center of gravity, respectively;

*

o

I I

11,
12,
13.

14,

15.
16,
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are the values when the center of gravity is at the maximum distance from the grid.
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